¹³C-NMR STUDY OF METHYL- AND BENZYL ETHERS OF L-ARABINOSE AND OLIGOSACCHARIDES HAVING L-ARABINOSE AT THE REDUCING END. SYNTHESIS OF 2-O-β-D-GLUCOPYRANOSYL-, 2-O-α-L-RHAMNOPYRANOSYL-, 3-O-β-D-GLUCOPYRANOSYL-2-O-α-L-RHAMNOPYRANOSYL-AND 4-O-β-D-GLUCOPYRANOSYL-2-O-α-L-RHAMNOPYRANOSYL-L-ARABINOSE

ANDRÁS LIPTÁK, ZOLTÁN SZURMAI and PÁL NÁNÁSI

Institute of Biochemistry, L. Kossuth University, H-4010 Debrecen, Hungary

and

András Neszmélyi

Central Research Institute of Academy of Sciences, Budapest, Hungary

(Received in the U.K. 1 March 1982)

Abstract—The reaction of benzyl exo-3,4-O-benzylidene- β -L-arabinopyranoside 1 with α -acetobromo-D-glucose 3 resulted in a mixture of two disaccharides, 5 and 6, in which the configuration of the acetal ring was different. The reaction of 1 with α -acetobromo-L-rhamnose 4 gave the desired disaccharide 7 without isomerisation of the dioxolane-type benzylidene ring. The reason for the isomerisation, occuring during the Koenigs-Knorr reaction, is discussed. Similar treatment of benzyl endo-3,4-O-benzylidene- β -L-arabinopyranoside 2 with 4 yielded 8. Compounds 6, 7 and 8 were deacetylated and benzylated to obtain 9, 10 and 11. Hydrogenolysis (LiAlH₄-AlCl₃) of all fully protected disaccharides afforded derivatives with a free OH-3 ($\theta \rightarrow 13$ and $11 \rightarrow 15$). Hydrogenolysis of 10 also resulted in 15, and the desired 14 with a free OH-4 was only the minor product of the reaction. Glucosylation of 6, 7, 16 and 17 gave the four title compounds (22, 23, 18 and 19).

The synthesized compounds were studied by ¹H- and ¹³C-NMR spectroscopic methods. In disaccharides having $(1 \rightarrow 2)$ bonds and in trisaccharide 19 having $(1 \rightarrow 2)$ and $(1 \rightarrow 3)$ bonds the arabinose moiety is present in pyranose and furanose forms. The complex spectra of these derivatives were assigned using the methyl ethers of L-arabinose (24-29) as model compounds. The ¹³C-NMR spectrum of 18 was assigned with the aid of 4-O- β -D-glucopyranosyl-L-arabinopyranose. For comparisons, the spectra of all mono-and dibenzyl ethers of benzyl β -L-arabinopyranoside were also recorded and assigned.

In nature both the D- and L-arabinose derivatives are very abundant compounds as the building blocks of polysaccharides¹ or as constituents of glycosides, mainly of saponine glycosides.²⁻⁴ There are some studies on the synthesis of disaccharides containing a D- or L-arabinose moiety,5 however the synthesis of higher oligosaccharides has not been reported. of Dor L-arabinose The acid reversion to oligosaccharides can not be taken into consideration as definitive synthesis.6 The difficulties of such syntheses may be explained by the lack of suitably protected arabinose derivatives. We have shown that the reductive cleavage of the benzylidene ring is a suitable method for the preparation of different benzyl ethers even in the case of D- and L-arabinopyranosides.^{7,8} Furthermore, it has been demonstrated that the benzylidene group can serve as a "temporary" blocking group for the pre-paration of higher oligosaccharides having branched structure.^{9,10} Both disaccharides² and 4-O- β -D-glucopyranosyl-2-O-a-L-rhamnopyranosyl-L-arabinose reported here are sugar components of saponine glycosides.³

RESULTS AND DISCUSSION

The reaction of benzyl exo-3,4-O-benzylidene- β -L-

arabinopyranoside⁸ 1 with α -acetobromo-D-glucose 3 (2,3,4,6,-tetra-O-acetyl- α -D-glucosyl bromide) using the Helferich procedure resulted in two disaccharide derivatives (5 and 6) in a ratio of 53:47 (GLC). Examination of this mixture showed clearly that isomerization of the dioxolane ring had taken place and compound 5 proved to be benzyl exo-3,4-O-benzylidene-2-O-(2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl) - β -L-arabinopyranoside, whereas compound 6 was the *endo*-3,4-O-benzylidene isomer of 5. The latter isomer 6 could be smoothly isolated by simple crystallization but the separation of 5 from the traces of the isomeric 6 proved to be unsuccessful.

The *endo*-configuration of the benzylidene ring of 6 was confirmed on the basis of ¹H and ¹³C-NMR spectroscopic investigations;^{11,12} the benzylidene proton resonated at 5.92 ppm, the signal of the acetalic carbon atom appeared at 103.7 ppm, whereas the benzylidene proton of the *exo*-isomer 5 was found at 6.16 ppm. These values are in good agreement with the corresponding data of compound 1 (6.18 and 103.0 ppm) and 2 (5.84 and 103.9 ppm).

The β -configuration of the interglycosidic bond in **6** was deduced from the ¹³C-NMR chemical shift value (C-1' 100.8 ppm).

Acetal migration during the Koenigs-Knorr reaction was reported in several cases¹³⁻¹⁷ and recently the structure of the acetal-migrated product has been determined in connection with the synthesis of laminaribiose¹⁸ and that of an $(1 \rightarrow 6)$ -bonded digalactoside derivative.¹⁹

In the present reaction mercuric bromide catalyses the $exo \Rightarrow endo$ isomerization and the very long time required for the glucosylation reaction (20 h) is enough to reach the equilibrium. The mechanism of this isomerization is the same as those of the acetal migration.²⁰

Rhamnosylation of 1 with α -acetobromo-L-rhamnose 4 required only 30 min reaction time, in this case isomerization was not observed and crystalline benzyl exo-3,4-O-benzylidene-2-O- (2,3,4-tri-O-acetyl-a-L-rhamnonvranosvl)- β -L-arabinopyranoside 7 was isolated. It was reported that the endo-benzylidene isomer of p-NO₂-phenyl α -L-rhamnopyranoside reacted more slowly than the exo-one,²¹ and this observation was confirmed in the case of benzyl *endo*-3,4-O-benzylidene- β -L-arabinopyranoside⁸ 2, as well. The reaction of 2 with 4 required about 1 h and during this prolonged reaction time isomerization, to a small extent, took place but the presence of 7 did not affect the preparation of 8, i.e. the isolation of benzyl endo - 3,4 - O - benzylidene - 2 - O - $(2,3,4 - tri - O - acetyl - \alpha - L - rhamnopyranosyl) - \beta - L$ arabinopyranoside. The structure of the two diastereoisomeric disaccharides (7 and 8) was clearly proved by their 'H NMR spectra; in the case of 7 the acetalic proton resonated at 6.16 ppm, and those of 8 appeared at 5.90 ppm.

Deacetylation of compounds 6, 7 and 8, followed by benzylation resulted in the crystalline disaccharide derivatives 9, 10 and 11, respectively. The ¹H-NMR spectra of the benzylated products showed that during the benzylation isomerization did not occur, the chemical shifts of the acetalic protons of the three disaccharides were the following: 9: 5.84; 10: 6.10; 11: 5.86 ppm.

Studies on several acetal compounds have shown that the direction of the ring cleavage of the dioxolane-type benzylidene derivatives is determined by the configuration of the acetalic carbon atom.^{22,23} Up to now only a few exceptions^{8,24} to this rule have been found and we have assumed that these anomalies are strongly dependent on the rate of the isomerization, taking place under the conditions of the hydrogenolysis.^{8,20}

Hydrogenolysis of compound 9 yielded the desired compound, i.e. benzyl 4-O-benzyl-2-O-(2,3,4,6-tetra-Obenzyl- β -D-glucopyranosyl) - β - L - arabinopyranoside 13 in crystalline form. The amount of the other, 3-Obenzyl isomer 12 was less than 5% (TLC), its presence was detected but it was not isolated.

Surprisingly, the hydrogenolysis of 10 resulted in an irregular product, benzyl 4 - O - benzyl - 2 - O - (2,3,4, - tri - O - benzyl - α - L - rhamnopyranosyl) - β - L - arabinopyranoside 15 and the amount of the expected product 14 was only 5% (TLC).

It may be assumed, that in the case of the above ring cleavage, the rate of the isomerization reaction was higher than the rate of the reduction of the oxocarbonium cation, formed from the *exo*-benzylidene ring of **10**. For this reason the quantity of LiAlH₄ in the "mixed-hydride" reagent²⁵ was increased, so it was hoped that the higher concentration of the hydride donor might increase the rate of the reduction of the oxocarbonium cation and, at the same time, the rate of the isomerization elicited by the chloroalane might be diminished. This assumption was correct, in part, and the ratio of **14** and **15** could be shifted to a value of 3:7 (TLC). Compounds **14** and **15** were separated by column chromatography.

Hydrogenolysis of 11 gave the expected product 15 and no trace of 14 could be detected by TLC.

Earlier studies have shown that the 2,4-di-O-substituted derivatives of benzyl β -L-arabinopyranoside possess higher chromatographic mobility (TLC) than the 2,3-di-O-substituted compounds.⁸ Comparing the TLC behaviour of 12, 13, 14 and 15, we assumed that compounds 12 and 14 were the 2,3-di-O-substituted arabinopyranoside derivatives and 13 and 15 were the 2,4,-di-Osubstituted arabinopyranosides.

To get more information, compounds 13, 14 and 15 were acetylated and the products were examined by ¹H-NMR. In the case of the acetate of 13 and 15 one proton shifted downfield, resonating at 5.32 and 5.14 ppm as doublet of doublets with the following coupling constants: $J_{2,3}$ 9.1 Hz, $J_{3,4}$ 3.6 Hz and $J_{2,3}$ 10.5 Hz, $J_{3,4}$ 3.2 Hz, respectively. The multiplicity and the values of the couplings clearly showed that the proton, shifted

downfield, was the C₃-H in both cases, being the β -Larabinopyranosides in Cl(L) conformation.

The spectrum of the acetate of 14 gave one proton multiplet at 5.38 ppm, originating from the coupling of H-4 with H-3 and H-5,5'.

Glycosylation of 14 and 15 with 3 according to the Helferich procedure resulted in benzyl 3-O-benzyl-4-O-(2,3,4,6 - tetra - O - acetyl - β - D - glucopyranosyl) - 2 - O - (2,3,4 - tri - O - benzyl - α - L - rhamnopyranosyl) - β - L - arabinopyranoside 16 and benzyl 4 - O - benzyl - 3 - O - (2,3,4,6 - tetra - O - acetyl - β - D - glucopyranosyl) - 2 - O - (2,3,4,6 - tetra - O - acetyl - β - D - glucopyranosyl) - 2 - O - (2,3,4-tri - O - benzyl - α - L - rhamnopyranosyl) - β - L - arabinopyranoside 17. Deacetylation of 16 and 17 and subsequent catalytic hydrogenation over Pd-on-carbon yielded the free trisaccharides 18 and 19 as amorphous solids. pounds 22 and 23 were obtained by catalytic hydrogenolysis of 20 and 21 under very mild conditions.

Before the explanation of these spectra it is to be emphasized that ¹³C-NMR spectroscopy is an excellent tool to determine the ring- and anomeric composition of various monosaccharides. D-Ribose was found to be the best model for showing the efficiency of this method, ^{26,27} and similarly, with the aid of ¹H-²⁸⁻²⁹ and ¹³C-NMR³⁰ spectra the composition of D-arabinose was also determined. Most recently, β -glucofuranose (0.13%) was also detected by ¹³C-NMR spectroscopy in D₂O solution.³¹ Similar investigations have been also made with several hexuloses.³²⁻³⁴

It was very obvious to assume, that the arabinose at the reducing end can exist in pyranose- and furanose forms with α - and β -anometric configurations. Being (1 \rightarrow 2)-bonds in the two disaccharides, the ring- and anometric character of the reducing end is reflected at the C-1 of the gluco- and rhamnopyranosyl units.^{35,36,10} This assumption was confirmed by the study of the spectra of 2-O-24, 3-O-25, 4-O-26, 2,3-di-O-27, 2,4-di-O-28- and 3,4di-O-methyl-L-arabinose 29,³⁷ and by the study of ringand anometric composition of L-arabinose in D₂O solution, where the following ratios of the isometre were found: α -p: 55%; β -p: 32%; α -f: 7% and β -f: 6%.

The detailed assignment of the methyl ethers is given in Table 1, and the following conclusions can be made in all methyl ethers in which the C₄-OH is free a considerable amount of furanoses can be found. The methylation shifts (α -shifts) are nearly 9-10 ppm, in comparison with the corresponding C atom in the arabinose unit. The β -shift values are strongly dependent on the stereo-

On removal of the O-acetyl- and benzylidene groups of 6 and 7 by Zemplén deacetylation and subsequent mild acid hydrolysis crystalline benzyl 2-O- β -D-glucopyranosyl - β - L - arabinopyranoside 20 and benzyl 2-O- α - L - rhamnopyranosyl - β - L - arabinopyranoside 21, respectively, were obtained. Catalytic cleavage of the benzyl group of 20 and 21 resulted in crystalline 2 - O - β - D - glucopyranosyl - L - arabinose 22 and 2 - O - α - L rhamnopyranosyl - L - arabinose 23, respectively.

The ¹³C-NMR spectra of compounds 20 and 21 were in good agreement with the postulated structures, the anomeric configuration of 21 was determined by measuring the ${}^{1}J_{C-1,H-1}$ coupling constant. However, both 22 and 23 showed complex ${}^{13}C$ -NMR spectra. The complex character of the spectra cannot be explained by any chemical transformation, or impurity, because com β -D-Glp-(1-+4) α -L-Rhp-(1-+2)>L-Ara

18

19

β-D-Gip-(1→2)-L-Ara

					Table	I. ¹³ C-NN	IR data f	or L-arabi	nose meth	yl ethers	(δ) in D ₂	0 at 50°					
Compounds		∢≽		24 24			<u>کې</u>		32	٤		27 27		% {	-	202	
	đ	94 	đ	۵δ	94	đ	٩ď	ભ	đ	Ad	P .	79	44	đ	۵۵	ן בי	۵م
Carbons						-											
C-1	97.	5 102.C	97.2	-0.3	100.3	97.5	0	102.5	91.5	0	97.2	С•0-	100.5	97.2	۳ . ۲	97.5	0
1 _{JC-1,H-1}	166 .	8				162.5			162								
C- 2	72.	.7	82.4	1-9-7	86 •0	7.17	-4.5		73.0	+0.3	82.0	+9•3	89 • 6	82.7	+10.0	6.17	-0. 8
G- 3	73.	e,	72.6	-0-7		82.5	+9•2	87 . 1	73.0		81.3	+8•0	85.0	72.4	6 . 0-	82.2	+8.9
G-4	69	5	1 •69	-0-1		65.1	-4.1	79 • 9	78.8	9 •6+	65.5	-3.7	83.2	78.7	+9•5	74.7	+5.8
G-5	-L9	0 62.1	. 66.7	-0-3	60.7	67.0	0	62 . 6	63.0	-4.0	66.7	-0 - 3	62.4	62.7	-4-3	62.8	-4.2
Me-2	R= \		60.7								60 • 6			60 . 8			
Me-3						57.1					57.9					57.4	
Me-4									57.8					57.8		57.4	
C-1	93.	.3 96.0	90.8	-2.5	94.7	93.4	+0.1	97.4	93.2	-0.1	90.7	-2.6	95.2	90 . 8	-2.5	93.2	-0.1
1, 1,H-1	169	5				170			168								
C-2	.69	4	78 . 6	+9•2	83.4	68.2	-1.2		69.7	+0.3	77.8	+8•4	85.4	78.9	+9•5	68.5	6•0-
G=3	.69	Č	68.4	-1-1		78.8	ۥ 6+	83 • 5	69.1	-0.4	77.4	6 • <i>L</i> +	84•0	68.1	-1.4	78.5	•6•
4-0	- 	ň	69.4	-0-1		65.6	-3.7		79 ° 0	7. 0+	65.2	-4.1	81 . 6	79.2	6•6+	75.4	+6.1
G-5		Ŋ	63.0	-0-2	61.8	63.1	-0.1	63 . B	59.4	-3.8	62.9	с. о-	64.0	59 .1	-4.1	59.1	-4.1
Me-2	d		58.2								58 • 2		•	58.3			
Ме-3						57.0					57.1					57.3	
Me-4									57.8					57.8		51.5	

Table 1. ¹³C-NMR data for 1-arahinose methol ethers

A= L-Arabinose

 $24 R = CH_3 i R_1 = R_2 = H$ $R_1 = R_2 = H$ 30 R = Bn i $25 R_1 = CH_3 i R = R_2 = H$ $31 R_1 = Bn$ $R = R_2 = H$ $26 R_2 = CH_3 + R = R_1 = H$ 32 R₂=Bn i $R = R_1 = H$ $27 R = R_1 = CH_3 + R_2 = H$ 33 R = R1=Bn $R_2 = H$ $\widetilde{34}$ R = R₂= Bn 28 R = $R_2 = CH_3$ i $R_1 = H$ i. $R_1 = H$ $\widetilde{35}$ R₁ = R₂ = Bn 29 R1=R2=CH3 i R=H R = H

chemical arrangement, their values are between -0.3 and -4.5 ppm. The introduction of a methyl group in position four results in a ~ 4 ppm upfield shift at C-5, and these values are nearly the same in the case of the α - and β -anomers. For this reason the C-5's are in the region of 63 ppm in the case of the α -anomers, and they resonate at 59 ppm in the β -anomers.

The resonances of the disaccharides 22 and 23 were assigned with reference to the spectrum of 2-O-methyl-Larabinose 24. There are three distinct sets of lines in the spectra of 22 and 23. The first set is the anomeric region (103-93 ppm) in which eight signals can be found. In the second region the carbons of the branching points and the lines of the C-4 α and C-4 β of the furanose skeleton are involved. In the third region the other skeleton carbons of the disaccharides may be detected.

By comparison to the spectrum of 18 with those of the 4-O-methyl-26 or with 2,4-di-O-methyl-L-arabinose 28, it can be seen that the upfield shift of C-5 in the case of 18 is smaller than those of the methyl ethers.

To obtain more informations about the behaviour of

substitution of arabinopyranoside derivatives on the 13 C-NMR spectra, a series of partially benzylated benzyl β -L-arabinopyranoside was recorded and assigned (Table 2).

The introduction of a benzyl group at a given position of benzyl β -L-arabinopyranoside results in a 8–9 ppm downfield shift, it is very similar to the values found in the case of benzylated L-rhamnopyranosides.¹⁰ The highest magnitude of the β -shifts is about -3 ppm, and these values can also be found at position five in the case of 4-O-substituted derivatives. This β -shift value at C-5 is between the magnitude of the methylation and the glycosylation β -shift.

The chemical shift of C-5 of the arabinose moiety in 18 is very similar to those of 4-O- β -D-glucopyranosyl-Larabinose,³⁸ in which the resonance lines are at 66.2 and 62.5 ppm, respectively. This finding clearly shows that the use of the chemical shift values of methyl- and benzyl ethers for the assignment of spectra of complex oligosaccharides has to be treated very carefully, and the conformation of the interglycosidic bonds might play a very decisive role in the spectral behaviour of carbohydrate oligomers.

The spectrum of compound 19 was assigned by comparison of the spectra of 22 and 23. The arabinose moiety exists in α , β -pyranose and furanose forms, and the composition of the reducing end is strongly reflected in both monosaccharide moieties coupled to it at position C-2 and C-3. In the case of the rhamnose moiety this effect is stronger than in the case of the D-glucopyranosyl moiety, being at position 2.

It is also to be noted that the interpretation of the spectra of higher oligosaccharides having an equilibrium at the reducing end between the forms of α , β -pyranose and -furanose may be very difficult, particularly in the case of compounds having $(1 \rightarrow 2)$ -bond. In these cases it is most useful to study the spectra of a glycoside deriva-

Compounds	Å	3	9	31		32	•	3	13	3	4	35	
• <u> </u>						<u></u>		·			-		
Carbons													
C-1	99.0	97.2	-1.8	99•5	+0.5	99.3	+0.3	97.0	-2.0	97.1	-1.9	99.2	+0.2
1 _J _{C-1,H-1}	166.1			166.0		166.0				166.0			
C- 2	68.8	76.9	+8.1	68.3	-0.5	69.6	+0.8	76.9	+8.1	77.2	+8.4	68.2	-0.6
C- 3	68.8	68.6	-0.2	78.0	+9.2	69.6	+0. 8	75.6	+6.8	68.5	-0.3	74.3	+5•5
C-4	68.3	68.9	+0.6	66.5	-1.8	77.2	+8.9	66.2	-2.1	77.3	+9.0	77.4	+9.1
C- 5	63.3	63.3	0	63.7	+0.4	60.7	-2.6	63.4	+0.1	60.4	-2.9	60.4	-2.9
Ph- <u>C</u> H ₂ -1	69.2	69.1		69.2		69.2		68.7		69.0		69.0	
Ph- <u>C</u> H ₂ -2		72.1						72.1		72.1			
Ph- <u>C</u> H ₂ -3				71.3				70.7				71.1	
Ph- <u>Q</u> H ₂ -4						71.6				71.5		71.3	
Solvent	DMSO-						CDC	13					
	-d ₆												

Table 2. ¹³C-NMR data for mono- and di-O-benzyl ethers of benzyl β -L-arabinopyranoside (δ)

Atomers α^{μ} α^{μ} β^{μ} α^{μ} <	Atomers αp αp αp αp αr βr αr Carbons 97.9 99.1 98.1 96.0 93.1 101.0 95.9 96.1 92.9 100.2 95.3 97.3 1 - 1 - $_{1}$ - $_{1}$ - $_{1}$ - $_{1}$ - $_{1}$ - $_{1}$ - $_{1}$ 167.4 167.4 10.0 95.9 96.1 92.9 100.2 95.3 97.3 97.3 1 - 1 76.5 67.7 67.9 73.0 63.4 63.0 63.4 63.3 63.6 66.7 73 1 74.7 68.6 68.7 63.2 63.2 63.0 63.4 63.0 63.4 73 1 74.7 68.6 66.1 63.2 63.2 63.0 63.4 73 1 74.7 68.5 63.3 63.2 63.4 64.4 63.0 63.4 73 1 103.1 102.2 72.4 63.1 63.4 64.4 71.0 <t< th=""><th>Atomera $\langle x^{\mu} \rangle$ $\langle \mu \rangle$</th><th></th><th>Compounds</th><th>50</th><th>&≀</th><th>ଟ ଅ</th><th></th><th>\in \</th><th></th><th></th><th></th><th>୍ ରହ</th><th></th><th></th><th> ₹?</th><th></th><th>1</th><th>۳? ۲</th><th>18</th><th>18</th><th>18</th><th>18</th></t<>	Atomera $\langle x^{\mu} \rangle$ $\langle \mu \rangle$		Compounds	50	&≀	ଟ ଅ		\in \				୍ ରହ			₹?		1	۳? ۲	18	18	18	18
DOLIS 97.9 99.1 98.1 96.0 93.1 101.0 95.9 96.1 92.9 100 -1,H-1 78.6 76.6 75.8 81.0 78.8 90.3 84.5 79.4 77.8 81 76.5 67.7 67.9 72.7 68.5 69.5 68.3 90.3 84.5 79.4 77.8 81 76.5 67.7 67.9 72.7 68.5 69.3 63.3 61 69.5 68.3 90 81 90 91 9	DOLES 97.9 99.1 96.0 93.1 101.0 95.9 96.1 92.9 100 -1,H-1 78.6 75.8 81.0 78.8 90.3 84.5 79.4 77.8 87 76.5 67.7 67.9 72.7 68.5 63.2 69.3 83 74.7 69.8 69.6 68.7 69.3 83.5 82.1 69.1 69.3 83 74.7 69.8 69.6 66.1 63.2 62.0 63.4 63.0 61 90.3 74.7 69.8 66.1 63.2 62.0 63.4 63.0 61 90.3 70.9 70.4 70.4 70.4 70.4 70.9 70.9 -1,H-1 103.7 102.2 171.2 71.0 73.3 72.6 69.8 100.4 102.6 101.4 102.6 103.0 17.45 71.45 100.4 105.0 104.4 102.6 104.4	DOLES 97.9 99.1 98.1 96.0 93.1 101.0 95.9 96.1 92.9 100 -1,H-1 78.6 76.6 75.8 81.0 78.8 90.3 84.5 79.4 77.8 81 76.5 67.7 66.7 65.8 81.0 78.8 90.3 84.5 79.4 77.8 81 76.5 67.7 67.9 72.7 66.5 65.1 69.3 82.1 69.1 69.8 81 74.7 66.8 66.1 63.2 62.0 63.4 66.4 63.0 61 100 58.5 63.2 63.0 66.1 63.2 62.0 63.1 69.2 81 103.7 103.7 100.8 103.2 63.0 61.4 63.0 61 90.3 100 103.7 103.7 69.2 83.5 82.1 69.4 63.0 61.4 60.3 61.3 70.9 70.9 71.0 71.	Ano	merb				КP	βp	ላ ያ	ßf	άþ	βp	ধ	Ф.	f Bf	$f \beta f \chi_p$	έ βε « ρ βρ	<i>f</i> β <i>f</i> Χρ βρ Χρ	τ βτ κρ βρ κρ βρ	έ βε «ρ βρ «ρ βρ «ρ	τ βτ κρ βρ κρ βρ κρ βρ	τ βτ κρ βρ κρ βρ κρ βρ κτ
			0	arbons					-		-		_			-	_	_		-	-		
				C-1	6-76	1. 66	98 .1	96.0	93 . 1	0.101	95.9	1• 96	92.9	100.2	9	5.3	5.3 97.4	5.3 97.4 93.2	5.3 97.4 93.2 96 . 1	5.3 97.4 93.2 96 .1 92.8	5.3 97.4 93.2 96.1 92.8 96.2	5.3 97.4 93.2 96.1 92.8 96.2 92.9	5.3 97.4 93.2 96.1 92.8 96.2 92.9 99.7
				1J_C-1,H-1	<u>-</u>		167.4																
				G - 2	78.6	76•6	75.8	81.0	78.8	90.3	84.5	79.4	77.8	87.9	81.6		73.0	73.0 69.7	73.0 69.7 79.3	73.0 69.7 79.3 80.0	73.0 69.7 79.3 80.0 77.9	73.0 69.7 79.3 80.0 77.9 76.7	73.0 69.7 79.3 80.0 77.9 76.7
				0 - 3	76.5	67.7	61.9	72.7	68.5			69•5	68.3				73.2	73.2 69.4	73.2 69.4 72.9	73.2 69.4 72.9 68.4	73.2 69.4 72.9 68.4 69.	73.2 69.4 72.9 68.4 69.9	73.2 69.4 72.9 68.4 69.9
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$				G-4	74.7	68.8	68•6	68.7	69•3	83.5	82.1	1. 69	69•8	83.6		•	19.1	6.67 I.61	19.1 79.3 79.2	7 . 77 2 . 67 79.2 79.2	77. 77. 79.2 79.2 77.7 77.	19.1 79.3 79.2 77.7 77.2	19 . 1 79.3 79.2 77.7 7.72
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{l lllllllllllllllllllllllllllllllllll$		G - 5	58•5	63.2	63•0	66.1	63.2	62.0	63.4	66.4	63.0	61.9	63.6	99	5 •2	5 . 2 62.5	5 . 2 62.5 65.5	5•2 62•5 65•5 62• 1	5.2 62.5 65.5 62.1 66.0	5.2 62.5 65.5 62.1 66.0 62.5	5.2 62.5 65.5 62.1 66.0 62.5 62.3
$ \begin{array}{cccccccc} c_1 & & & 102.2 & & 101.6 & 103.1 & 100.7 & 101.9 \\ 1^J c_{-1,H-1} & & & 171.2 & & & 70.8 \\ c_2 & & 70.8 & & 70.3 & & 71.0 & & 71.0 & & \\ c_3 & & 70.3 & & 70.3 & & 71.0 & & & \\ c_4 & & & 72.0 & & 70.3 & & 70.9 & & 70.9 & & \\ c_6 & & & 72.0 & & 73.3 & 72.6 & & & & & & \\ c_6 & & & & 72.0 & & 71.7 & & & & & & & & & & \\ c_6 & & & & & 72.0 & & & 71.0 & & & & & & & & & & & & & & & & & & &$				PLCH	103.7																		
$ \begin{array}{ccccc} ^{1} J_{G-1,H-1} & & 171.2 & & 171.2 \\ C-2 & 70.8 & & 71.0 \\ C-3 & 70.3 & 70.3 \\ C-4 & & 72.0 & 70.3 \\ C-4 & & 72.0 & 70.3 \\ C-6 & & 72.0 & 70.3 \\ C-6 & & 72.0 & 70.3 \\ C-1 & 100.8 & 105.0 & 103.6 & 104.4 & 102.6 & 103.0 \\ 1_{J_{G-1,H-1}} & & 17.45 & & 104.4 \\ J_{G-1,H-1} & & 100.8 & 105.0 & 103.6 & 104.4 & 102.6 & 103.0 \\ 1_{J_{G-1,H-1}} & & 17.45 & & 17.45 \\ C-1 & 100.8 & 105.0 & 103.6 & 104.4 & 102.6 & 103.0 \\ 1_{J_{G-1,H-1}} & & 17.45 & & 104.4 \\ 1_{J_{G-1,H-1}} & & 17.45 & & 104.4 \\ 1_{J_{G-1,H-1}} & & 17.8 & 74.0 & & 74.2 \\ 71.8 & 74.0 & 74.2 & & 76.8 \\ 71.6 & 78.6 & 76.7 & 76.8 \\ \end{array} $	$ \begin{array}{cccccc} ^{1} J_{G-1,H-1} & & & & & & & & & & & & & & & & & & &$	$ \begin{array}{cccccc} ^{1} J_{G-1,H-1} & & & & & & & & & & & & & & & & & & &$		G-1			102.2					101.8	103.1	100.7	6.1 01				101.8	101.8 103.0	101.8 103.0 101.7	101.8 103.0 101.7 102.9	101.8 103.0 101.7 102.9 103.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1JC-1,H-1			171.2																
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		G=2			70.8					11.	0						17	71.0	11.0 71	71.0 71.0	71.0 71.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$0-4$ 72.0 73.3 72.6 $c-5$ 68.6 69.8 69.8 $c-6$ 17.79 17.79 17.45 $c-1$ 100.8 105.0 103.6 103.6 103.6 $J_{J_{c-1}, H-1}$ 100.8 105.0 103.6 104.4 102.6 103.0 104 $J_{J_{c-1}, H-1}$ 71.8 74.0 74.2 76.7 76.8 76.7 76.8 $c-3$ 71.6 78.6 70.6 $70.$	$G-4$ 72.0 73.3 72.6 $G-5$ 68.6 69.8 69.8 $G-6$ 17.79 17.79 69.8 $G-1$ 100.6 105.0 17.79 17.45 $G-1$ 100.6 105.0 103.6 103.6 103.6 $J_{G-1,H-1}$ 100.6 103.6 104.4 102.6 103.6 104.6 $J_{G-1,H-1}$ 100.6 105.0 103.6 104.4 102.6 103.0 104 $J_{G-1,H-1}$ 71.6 74.0 74.2 74.2 74.6 74.2 74.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.7 76.6 76.7 76.6 76.7 76.7 77.0 76.9 76.7 77.0 76.6 76.7 76.7 77.0 77.0 76.9 76.7 76.7 77.0 77.0 76.9 76.7 76.7 76.7 76.7 76.7 76.7 76.7 76.7		G-3			70.3					70.	6						10	70.9	70.9	70.9 70.8	70.9 70.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c cccccc} C-5 & 68.6 & 69.8 \\ C-6 & 17.79 & 17.79 & 17.45 \\ C-1 & 100.8 & 105.0 & 103.6 & 104.4 & 102.6 & 103.0 \\ J_{G-1,H-1} & 100.8 & 105.0 & 103.6 & 104.4 & 102.6 & 103.0 \\ 1 & 17.6 & 74.0 & 74.2 & 74.2 \\ C-2 & 71.6 & 78.6 & 76.8 & 76.8 \\ C-4 & 70.3 & 70.6 & 70.5 & 70.5 \\ \end{array} $	$G-5$ 68.6 69.8 $G-6$ 17.79 17.79 $G-1$ 100.8 105.0 103.6 104.4 17.45 $J_{J_{G-1},H-1}$ 100.8 105.0 103.6 104.4 102.6 103.0 104 $J_{J_{G-1},H-1}$ 100.8 105.0 103.6 104.4 102.6 103.0 104 $G-2$ 71.8 74.0 74.2 71.6 76.7 76.8 76.7 76.8 70.5 70.6 70.6 70.5 70.6 70.5 71.0 71.0 76.7 76.7 76.7 76.7 76.7 76.7 77.0 71.0 70.6 70.5 77.0 77.0 77.0 77.0 76.7 76.7 76.7 77.0		G-4			72.0					73.3	72.6						73.0	73.0 72.8	73.0 72.8 73.7	73.0 72.8 73.7 72.7	73.0 72.8 73.7 72.7
G-6 17.79 17.45 C-1 100.8 105.0 103.6 104.4 102.6 103.0 104 $J_{G-1,H-1}$ T1.8 74.0 74.2 74.2 71.6 78.6 76.7 76.8	G-6 17.79 17.45 C-1 100.8 105.0 103.6 104.4 102.6 103.0 104 $J_{J_{G-1},H-1}$ 100.8 105.0 103.6 104.4 102.6 103.0 104 $J_{J_{G-1},H-1}$ 100.8 105.0 103.6 104.4 102.6 103.0 104 $C-2$ 71.8 74.0 74.2 76.8 71.6 78.6 70.6 70.5 104 $C-3$ 71.6 78.6 70.5 70.5 70.5 70.5 104	G-6 17.79 17.45 C-1 100.8 105.0 103.6 104.4 102.6 103.0 104 $^{1}J_{G-1,H-1}$ 1 74.0 74.2 74.2 106.8 76.6 76.8 104 $^{-2}$ 71.6 78.6 76.7 76.8 70.5 104 $^{-2}$ 71.6 78.6 76.8 70.5 70.6 70.5 104 $^{-2}$ 73.0 70.6 70.5 70.5 70.5 73.0 70.5 70.5 70.5 <		c- 5			68•6					69'	8						69•69	69°69 69°8	69 • 6 69 • 8 69 • 5	69 - 6 69 - 8 69 - 5 69 - 8	69 . 6 69.8 69.5 69.8
C-1 100.8 105.0 103.6 104.4 102.6 103.0 104 ¹ J _{G-1} ,H-1 71.8 74.0 74.2 C-2 71.6 78.6 76.8	C-1 100.8 105.0 103.6 104.4 102.6 103.0 104 $J_{G-1,H-1}$ 104 $C-2$ 71.8 74.0 74.2 104 $C-2$ 71.6 78.6 76.8 104 $C-3$ 71.6 78.6 76.8 <	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		G - 6			17.79					17.	45						17.36	17.36 17.46	17.36 17.46 17.29	17.36 17.46 17.29 17.44	17.36 17.46 17.29 17.44
¹ J _{G-1} ,H-1 C-2 71.8 74.0 74.2 C-3 71.6 78.6 76.8	¹ J _{G-1} ,H-1 C-2 71.8 74.0 74.2 C-3 71.6 78.6 76.8 C-4 70.3 70.6 70.5 70.5	¹ J _{G-1} ,H-1 C-2 C-3 71.6 78.6 70.5 70.6 70.6 70.5 73.0 77.0 76.9 76.7		C-1	100.8	105.0		103.6	104.4	102.6	103.0					104	•0	•6 104•4	.6 104.4 104.5	•6 104.4 104.5 104.6	•6 104.4 104.5 104.6 102.8	•6 104.4 104.5 104.6 102.8 104.4	•6 104.4 104.5 104.6 102.8 104.4
G-2 71.8 74.0 74.2 G-3 71.6 78.6 76.8	G-2 71.8 74.0 74.2 G-3 71.6 78.6 76.8 G-4 70.3 70.6 70.5	G-2 71.8 74.0 74.2 G-3 71.6 78.6 76.7 G-4 70.3 70.6 70.5 G-5 73.0 77.0 76.9		1 _J H_1																			
C-3 71.6 78.6 76.7 76.8	G-3 71.6 78.6 76.7 76.8 G-4 70.3 70.6 70.6 70.5	G-3 71.6 78.6 76.7 76.8 G-4 70.3 70.6 70.5 70.5 G-5 73.0 77.0 76.9 76.7		G-2	71.8	74.0		74	5								74	74.3	74.3 73.1	74.3 73.1 74.3	74.3 73.1 74.3 73.	74.3 73.1 74.3 73.9	74.3 73.1 74.3 73.9
	G-4 70.3 70.6 70.5 70.5	C-4 70.3 70.6 70.5 70.5 C-5 73.0 77.0 76.9 76.7		G-3	21.6	78.6		76.7	76.8								76	76.7	76.7 76.	76.7 76.6	76.7 76.6 76.	76.7 76.6 76.5	76.7 76.6 76.5
C-5 73.0 77.0 76.9 76.7 C-6 61.8 61.6 61.8 61.7	C-6 61.8 61.6 61.8 61.7			Solvent	CDC13	DMSO-(1 ₆							D20									

3494

A. LIPTÁK et al.

A= 4-0-6-D-Glucopyranosyl-L-arabinose

۱ ۱۱ ۱

•

-

i) :(ì 'n

tive having a fixed anomeric configuration at the reducing end. An other possibility to overcome the complexity of the spectra may be the investigation of the corresponding alditol, prepared by the reduction of the oligosaccharide.

EXPERIMENTAL

General. M.ps were determined on a Kofler apparatus and are uncorrected. Optical rotations were measured with a Perkin-Elmer 241 polarimeter; equilibrium values are given for compounds 18, 19, 22 and 23. ¹H- and ¹³C-NMR spectra were taken at room temp and at the frequency of 100.1 or 25.16 NHz with Jeol MH-100 and Varian XL-100-FT-15 spectrometers, using TMS or dioxan as internal reference.

TLC was performed on DC Alurolle Kieselgel 60 F 254 (Merck); detection was effected by charring with sulfuric acid. Both, Kieselgel G and Kieselgel H (Reanal) were used for column chromatography. GLC was carried out on a Hewlett-Packard 5840 A instrument fitted with a helical stainless-steel column (4 ft \times 0.2 mm i.d.) packed with 10% of UCW-982 on Gas chrom Q (80-100 mesh). The temperature programme was started from 275° at 2.5°/min (a); isotherm (b). The carrier gas was nitrogen at 20 ml/min.

Reaction of benzyl exo - 3,4 - O - benzylidene - β - L - arabinopyranoside with α - acetobrome - D - glucose

Benzyl exo - 3,4 - O - benzylidene - β - L - arabinopyranoiside (1, 6.57 g) was dissolved in abs benzene (200 ml) and nitromethane (200 ml) and the soln was evaporated at atmospheric pressure to half its volume. It was cooled to 60° and treated with Hg(CN)₂ (5.56 g) and α -acetobrome-p-glucose (3, 9.05 g), and then stirred for 20 h under anhydrous conditions. The mixture was diluted with CH₂Cl₂ (100 ml), filtered, and concentrated. The residue was dissolved in CH₂Cl₂ (300 ml), the mixture was filtered, and the filtrate was washed with 5% Klaq (2 × 50 ml) and water (2 × 50 ml). After drying over Na₂SO₄ the organic layer was concentrated to a syrupy residue which crystallised on standing.

The crude product contained benzyl *exo*-3,4-O-benzylidene- (5, $R_T 8.53 \text{ min}$), and benzyl *endo* - 3,4 - O - benzylidene - 2 - O - (2,3,4,6 - tetra - O - acetyl - β - D - glucopyranosyl) - β - L - arabinopyranoside (6, $R_T 7.34 \text{ min}$) in a ratio of 47:53 (GLC). Recrystallization from EtOH (700 ml) gave 4.20 g (31.9%) of pure 6, m.p. 179-181°, $[\alpha]_D$ +103° (c 1.03, CHCl)₃, R_t 0.65 (benzene-MeOH, 95:5), R_T 7.34 min (a column). 'H NMR data (δ , ppm): 7.50-7.20 (m, 10H, aromatic protons); 5.92 (s, 1H, PhCH); 5.20-4.89 (m, 3H, H-2', 3', 4'); 4.96 (d, 1H, H-1); 3.34 (m, 1H, H-2); 1.96 (s, 12H, 40Ac). (Found: C, 59.72; H, 5.90. Calc. for $C_{33}H_{38}O_{14}$: C, 60.18; H, 5.82%.)

A small amount of the mother liquor was concentrated. Its ¹H-NMR spectrum showed two signs of PhCH belonging to 5 (6.19 ppm) and to 6 (5.92 ppm), respectively. Compound 5 was unseparable from traces of 6 by TLC.

Benzyl exo - 3,4 - O - benzylidene - 2 - O - $(2,3,4 - tri - O - acetyl - \alpha - L - rhamnopyranosyl) - \beta - L - arabinopyranoside 7$

Compound 1 (4.68 g) was dissolved in abs benzene (300 ml) and nitromethane (300 ml) and the soln was evaporated at atmospheric pressure to half its volume. It was cooled to 45° and treated with Hg(CN)₂ (4.32 g) and α -acetobromo-L-rhamnose (4, 6.04 g), and then stirred. After 15 min, more. Hg(CN)₂ (2.16 g) and 4 (3.02 g) were added, and stirring was continued for 30 min. The usual work-up gave a syrupy residue, which was crystallized from EtOH (48 ml) to yield 3.28 g of 7. The mother liquor was evaporated and applied to a Kieselgel G column (eluant: CH₂Cl₂-EtOAc 95:5) to obtain second crops of pure 7 (2.80 g).

The overall yield of 7: 6.08 g (71.0%), m.p. 138–140°, $[\alpha]_D + 39^\circ$ (c 0.90, CHCl₃), R_f 0.71 (light pefroleum-EtOAc, 2:1), R_T 3.58 min (b column). ¹H-NMR data (δ , ppm): 7.50–7.20 (m, 10H, aromatic protons); 6.16 (s, 1H, PhCH); 5.42–5.02 (m, 4H, H-1',2',3',4'); 4.94 (d, 1H, H-1); 4.86–4.47 (m, 3H, PhCH₂ and H-3); 4.22-3.64 (m, 5H, H-2,4,5_a,5_e and H-5'); 2.10, 2.02 and 1.99 (3s, 9H, 30Ac); 1.06 (d, 3H, C₅-CH₃). (Found: C, 62.41; H, 5.99. Calc. for C₃₁H₃₆O₁₂: C, 61.99; H, 6.04%.) Benzyl endo - 3,4 - O - benzylidene - 2 - O - $(2,3,4 - tri - O - acetyl - \alpha - L - rhamnopyranosyl) - \beta - L - arabinopyranoside$ **8**

Compound 2 (0.80 g) was treated with 4 for 1 h in 1:1 abs benzene-nitromethane in the presence of Hg(CN)₂ as described for 7. The syrupy product was chromatographed on a Kieselgel G column, using 2:1 light petroleum-EtOAc as the eluant. Yield: 0.68 g (46.5%), $[\alpha]_D + 74^{\circ}$ (c 1.97, CHCl₃), R_f 0.63 (light petroleum-EtOAc, 2:1), R₇ 3.28 min (b column). ¹H-NMR data (δ , ppm): 7.60-7.20 (m, 10H, aromatic protons); 5.90 (s, 1H, PhCH); 5.45-5.27 (m, 2H, H-3',4'); 4.99 (m, 2H, H-1', 2'); 4.90 (d, 1H, H-1); 4.67 (q, 2H, PhCH₂); 4.54 (dd, 1H, H-3); 4.26 (m, 1H, H-4); 4.05 (m, 2H, H-5₆); 3.89-3.60 (m, 2H, H-2,5'); 2.09, 2.02 and 1.98 (3s, 9H, 30Ac); 1.03 (d, 3H, C₅,-CH₃); $J_{1,2}$ = 3.5 Hz; $J_{2,3}$ = 7.6 Hz; $J_{3,4}$ = 6.1 Hz; $J_{5,6'}$ = 6.2 Hz. (Found: C, 61.79; H, 6.10. Calc. for C₃₁H₃₆O₁₂: C, 61.99; H, 6.04%.)

Benzyl endo $-3,4-O - benzylidene - 2 - O - (2,3,4,6 - tetra - O - benzyl - <math>\beta - D - glucopyranosyl) - \beta - L - arabinopyranoside 9$

A soln of 6 (0.90 g) in abs MeOH (50 ml) was treated with 1N methanolic NaOMe (0.3 ml). After standing at room temp for 16 h the mixture was neutralised with Amberlite IR-120 (H⁺) resin and concentrated. The residue (0.66g) without isolation was benzylated with benzyl chloride (25 ml) in the presence of KOH (2.5 g) at 100° for 4 h. The organic layer was then removed by decantation and the residue was washed with CH₂Cl₂ and filtered. After addition of a small amount of NaHCO₃, the filtrate was steam distilled and the syrupy product was crystallised from EtOH (27 ml) to give 642 mg (55.2%) of 9, m.p. 94-96°, $(\alpha I_D + 93°)$ (c 0.71, CHCl₃), R_f 0.73 (benzene-MeOH, 199:1). ¹H-NMR data (δ , ppm): 7.50-7.05 (m, 30H, aromatic protons); 5.84 (s, 1H, PhCH); 5.11 (d, 1H, H-1); 4.98 (d, 1H, H-1). (Found: C, 74.35; H, 6.35. Calc. for C₅₃H₅₄O₁₀. C, 74.80; H, 6.40%.)

Benzyl exo - 3,4 - O - benzylidene - 2 - O - $(2,3,4 - tri - O - benzyl - \alpha - L - rhamnopyranosyl) - \beta - L - arabinopyranoside 10$

Compound 7 (3.87 g) was saponified and the product (2.91 g), without isolation, was benzylated as described for the preparation of 9, to obtain 3.72 g (77.5%) of crystalline 10. Recrystallisation from EtOH (84 ml) gave 2.58 g (53.8%), m.p. 99–101°, $[\alpha]_D$ +69° (c 0.71, CHCl₃), R_f 0.59 (light petroleum-EtOAc, 2:1). 'H-NMR (δ , ppm): 7.50–7.10 (m, 25H, aromatic protons); 6.10 (s, 1H, PhCH); 1.24 (d, 3H, C₅, -CH₃), (Found: C, 73.98; H, 6.47. Calc. for C₄₆H₄₈O₉: C, 74.17; H, 6.50%.)

Benzyl endo - 3,4 - O - benzylidene - 2 - O - (2,3,4 - tri - O - benzyl - α - L - rhamnopyranosyl) - β - L - arabinopyranoside 11

Compound 8 (0.67 g) was saponified and benzylated as described for the preparation of 9. The syrupy product (0.57 g; 68.6%) was chromatographed on a Kieselgel G column with 2:1 light petroleum-EtOAc mixture to obtain pure crystalline 11 (0.48 g; 57.8%). After recrystallisation from EtOH had m.p. 90-92°, $[\alpha]_D$ +110° (c 0.60, CHCl₃), R_t 0.53 (light petroleum-EtOAc, 2:1). ¹H-NMR data (β , ppm): 7.60-7.00 (m, 25H, aromatic protons); 5.96 (s, 1H, PhCH); 1.18 (d, 3H, C₅, CH₃). (Found: 74.28; H, 6.62. Calc. for C₄₆H₄₈O₅: C, 74.17; H, 6.50%.)

Benzyl 4 - O - benzyl - 2 - O - (2,3,4,6 - tetra - O - benzyl - β - D - glucopyranosyl) - β - L - arabinopyranoside 13

To a soln of 9 (0.45 g) in a mixture of CH_2CI_2 (8 ml) and ether (3 ml) were added LiAlH₄ (0.30 g) and a soln of AlCI₃ (0.90 g) in ether (5 ml), and the mixture was heated under reflux for 15 min. It was then cooled and the excess reagent was decomposed with EtOAc (5 ml) and water (10 ml). The mixture was diluted with ether (30 ml) and decanted from Al(OH)₃. The residue was washed with ether (2 × 30 ml). The combined organic layers were washed with water (2 × 15 ml), dried (Na₂SO₄) and concentrated. The crystalline residue (0.44 g; 97.5%) was recrystallised from a mixture of ether (4 ml) and light petroleum (20 ml) to yield pure 13 (0.33 g; 73.2%), m.p. 70–74°, $[\alpha]_D + 84°$ (c 0.69, CHCl₃). (Found: C, 74.73; H, 6.57. Calc. for C₅₃H₅₆O₁₀: C, 74.63; H, 6.62%).

100 mg of 13 was conventionally acetylated for ¹H-NMR study: (δ , ppm): 7.40-7.05 (m, 30H, aromatic protons); 5.32 (dd,

1H, H-3); 5.25 (d, 1H, H-1); 1.73 (s, 3H, OAc); $J_{1,2} = 3.2$ Hz; $J_{2,3} = 9.1$ Hz; $J_{3,4} = 3.6$ Hz.

Reductive ring cleavage of benzyl exo - 3,4 - O - benzylidene - 2 - O - (2,3,4 - tri - O - benzyl - α - L - rhamnopyranosyl) - β - L - arabinopyranoside with LiAlH₄ - AlCl₃ reagent

Compound 10 (2.00 g) was hydrogenolysed with LiAlH₄ (408 mg) and AlCl₃ (714 mg) as described for the reaction of 9. The syrupy product (1.95 g; 97.2%) containing benzyl 3-O-benzyl-(14) and benzyl 4 - O - benzyl - 2 - O - (2,3,4 - tri - O - benzyl - $\alpha - \mu$ -rhamnopyranosyl) - $\beta - \mu$ - arabinopyranoside 15 in a ratio of 1:3 (TLC) was column chromatographed to give 460 mg (22.4%) of 14 and 1.18 g (58.8%) of 15.

Compound 14 was syrup, had $[\alpha]_D$ +61° (c 0.48, CHCl₃), R_f 0.14 (light petroleum-EtOAc, 2:1). (Found: C, 74.23; H, 6.80. Calc. for C₄₆H₃₀O₉: C, 73.97; H, 6.75%.)

100 mg of 14 was conventionally acetylated for ¹H-NMR study: (δ , ppm): 7.50 - 7.10 (m, 25H, aromatic protons); 5.38 (m, 1H, H-4); 2.04 (s, 3H, OAc); 1.12 (d, 3H, C₅-CH₃).

Compound 15 was syrup, had $[\alpha]_D$ +77.5° (c 0.62, CHCl₃), R_f 0.33 (light petroleum-EtOAc, 2:1). (Found: C, 74.18: H, 6.70. Calc. for C₄₆H₅₀O₉: C, 73.97; H, 6.75%.)

100 mg of 15 was conventionally acetylated for ¹H-NMR study: (δ , ppm): 7.50-7.10 (m, 25H, aromatic protons); 5.14 (dd, 1H, H-3); 1.80 (s, 3H, OAc); 1.18 (d, 3H, C₅-CH₃); $J_{2,3} = 10.5$ Hz; $J_{3,4} = 3.2$ Hz.

Benzyl 4 - O - benzyl - 2 - O - $(2,3,4 - tri - O - benzyl - \alpha - L - rhamnopyranosyl) - \beta - L - arabinopyanoside 15$

Compound 11 (0.45 g) was hydrogenolysed as described for the reaction of 9, to give 0.44 g (97.5%) of pure 15.

Benzyl 3 - O - benzyl - 4 - O - (2,3,4,6 - tetra - O - acetyl - β - Dglucopyranosyl) - 2 - O - (2,3,4 - tri - O - benzyl - α - L rhamnopyranosyl) - β - L - arabinopyranoside 16

Compound 14 (300 mg) was treated with 3 (198 mg) in 1:1 abs benzene-nitromethane (60 ml) in the presence of Hg(CN)₂ (122 mg) at 60°. After 10 and 20 h more Hg(CN)₂ (122 mg) and 3 (198 mg) were added and the mixture was stirred for 30 h. The usual manner gave a syrupy product which after twice purification by column chromatography-using CH₂Cl₂-acetone 95:5 and light petroleum-EtOAc 1:3, as the eluant-gave pure syrupy 16 (230 mg; 53.2%), $[\alpha]_D + 42^\circ$ (c 0.79, CHCl₃). (Found: C, 66.78; H, 6.40. Calc. for C₆₀H₆₈0₁₈: C, 66.90; H, 6.36%.)

Benzyl 4 - O - benzyl - 3 - O - $(2,3,4,6 - tetra - O - acetyl - \beta - D - glucopyranosyl) - 2 - O - <math>(2,3,4 - tri - O - benzyl - \alpha - L - rhamnopyranosyl) - \beta - L - arabinopyranoside 17$

Compound 15 (460 mg) was treated with 3 as described for the preparation of 16, to give a syrupy product, which after purification by column chromatography gave 490 mg (73.9%) of pure syrupy 17; $\{\alpha\}_D$ +45° (c 0.36, CHCl₃), R_f 0.71 (CH₂Cl₂-acetone, 95:5). (Found: C, 67.02; H, 6.30. Calc. for C₆₀H₆₈O₁₈: C, 66.90; H, 6.36%.)

4 - O - β - D - glucopyranosyl - 2 - O - α - L - rhamnopyranosyl - L - arabinose 18

Compound 16 (210 mg) was deacetylated with NaOMe (5 mg) in abs MeOH (30 ml) for 12 h. The soln was neutralised with Amberlite IR-120 (H⁺) resin, filtered and concentrated. The residue without isolation was hydrogenated in the presence of PdC (100 mg) in a mixture of EtOH (15 ml) and AcOH (5 ml) for 48 h. The catalyst was filtered off, the filtrate was concentrated and the traces of acetic acid are removed from the residue by additional distillation with benzene (3 × 5 ml). Yield: 75 mg (83.9%); amorphous; $[\alpha]_D + 19^\circ$ (c 0.48, water), R_f 0.43 (1-butanol-MeOH-H₂O, 2.1:1). (Found: C, 44.66; H, 6.55. Calc. for C₁₇H₃₀O₁₄: C, 44.54; H, 6.60%.)

3 - O - β - D - glucopyranosyl - 2 - O - α - L - rhamnopyranosyl - L - arabinose 19

Compound 17 (420 mg) was saponified and then hydrogenated in the presence of PdC, as described for the preparation of 18. The product (148 mg; 82.8%) was purified by column chromatography on Kiesselgel H, with 1-butanol-MeOH-H₂O 2:1:1 as the eluant, to give amorphous **19** (110 mg; 61.5%), $[\alpha]_D 0^\circ$ (c 0.74, water), R_f 0.44 (1-butanol-MeOH-H₂O, 2:1:1). (Found: C, 44.70; H, 6.52. Calc. For C₁₇H₃₀O₁₄: C, 44.54; H, 6.60%.)

Benzyl 2 - O - β - D - glucopyranosyl - β - L - arabinopyranoside 20

Compound 6 (1.80 g) was saponified with NaOMe (10 mg) in abs MeOH (60 ml) for 12 h. After work-up the product was dissolved in EtOH (40 ml) and 0.1N H₂SO₄ (40 ml) and boiled for 5 h. The hot soln was neutralised with BaCO₃, filtered and concentrated. The residue (1.00 g; 90.9%) was crystallised from EtOAc to yield 420 mg (38.2%) of **20**; m.p. 199-200°, $[\alpha]_D$ +119° (c 0.70, water), R_f 0.61 (1-BuOH-MeOH-H₂O, 2:1:1). (Found: C, 53.59; H, 6.52. Calc. for C₁₈H₂₆O₁₀: C, 53.73; H, 6.51%.)

Benzyl 2 - O - α - L - rhamnopyranosyl - β - L - arabino-pyranoside 21

Compound 7 (1.20 g) was saponified and then hydrolysed as described for the preparation of **20**. The crystalline product (730 mg; 94.6%) was recrystallised from a mixture of EtOAc (40 ml) and EtOH (4 ml) to give 260 mg (33.7%) of **21**; m.p. 216-220°, $[\alpha]_D$ +100° (c 0.65, water), R_f 0.62 (1-butanol-MeOH-H₂O, 2:1:1). (Found: C, 56.09; H, 6.69. Calc. for C₁₈H₂₆O₉: C, 55.95; H, 6.78%.)

2 - O - β - D - glucopyranosyl - L - arabinose 22

Compound 20 (330 mg) was hydrogenated in the presence of PdC (100 mg) in EtOH (15 ml) and acetic acid (5.ml) for 72 h. The product was purified by column chromatography on Kieselgel H with 1-butanol-MeOH-H₂O 2:1:1 as the eluant, to give syrupy 22 (210 mg; 82.0%). Crystallisation from abs MeOH gave 103 mg (40.2%) of pure 22; m.p. 120-123°, $[\alpha]_D$ +35° (c 0.65, water), R_f 0.44 (1-BuOH-MeOH-H₂O, 2:1:1). (Found: C, 42.53; H, 6.50. Calc. for C₁₁H₂₀O₁₀:C, 42.31; H, 6.46%.)

2 - O - α - \perp rhamnopyranosyl - \perp - arabinose 23

Compound 21 (280 mg) was hydrogenated in the presence of PdC, as described for the preparation of 22. The product (200 mg; 93.2%) was purified by column chromatography on Kieselgel H with 1-BuOH-MeOH-H₂O 2:1:1, as the eluant, to yield syrupy 23 (120 mg; 55.9%). After crystallisation from abs MeOH had m.p. 141-145°, $[\alpha]_D$ + 12° (c 0.51, water), R_f 0.51 (1-butanol-MeOH-H₂O, 2:1:1). (Found: C, 44.71; H, 6.71. Calc. for C₁₁H₂₀O₉: C, 44.59; H, 6.80%.)

REFERENCES

- ¹G. O. Aspinall, In *The Carbohydrates, Vol. IIB* (Edited by W. Pigman and D. Horton), p. 515. Academic Press, New York (1972).
- ²R. Tschesche and G. Wulff, Prog. Chem. Organic Natural Products **30**, 461 (1973).
- ³G. E. Dekanosidze, T. A. Pkheidze, T. T. Gorovits and E. P. Kemertelidze, *Khim. Prir. Soedin.* **6**, 484 (1970); *Chem. Abstr.* **74**, 10352 (1971).
- ⁴R. Higuchi and T. Kawasaki, *Chem. Pharm. Bull. Tokyo* 20, 2143 (1972).
- ⁵D. H. Ball and J. K. N. Jones, J. Chem. Soc. 4871 (1957); I. J. Goldstein, F. Smith and H. C. Srivastava, J. Am. Chem. Soc. 79, 3858 (1957); G. O. Aspinall and R. J. Ferrier, J. Chem. Soc. 1501 (1958); P. A. J. Gorin, Can. J. Chem. 40, 275 (1962); D. Arndt and A. Graffi, Carbohydr. Res. 48, 128 (1976); R. S.
- Sarfati and L. Szabó, Carbohydr. Res. 65, 11 (1978).
- ⁶J. K. N. Jones and W. H. Nicholson, J. Chem. Soc. 27 (1958).
- ⁷A. Lipták, Carbohydr. Res. 63, 19 (1978).
- ⁸A. Lipták, Z. Szurmai, J. Harangi and P. Nánási, Acta Chim. Acad. Sci. Hung. 108, 333 (1981).
- ⁹A. Lipták and P. Nánási, Tetrahedron Letters 921 (1977).
- ¹⁰P. Fügedi, A. Lipták, P. Nánási and A. Neszmélyi, *Carbohydr. Res.* **80**, 233 (1980).
- ¹¹N. Baggett, K. W. Buck, A. B. Foster and J. M. Webber, J. Chem. Soc. 3401 (1965).

- ¹²A. Neszmélyi, A. Lipták and P. Nánási, Carbohydr. Res. 58, C7 (1977).
- ¹³K. Matsuda, Chem. Ind. London 1627 (1958).
- ¹⁴N. K. Kochetkov, A. F. Bochkov, T. A. Sokolovskaya and V. J. Snyatkova, Carbohydr. Res. 16, 17 (1971).
- ¹⁵B. H. Koeppen, Carbohydr. Res. 24, 154 (1972).
- ¹⁶E. J. C. Curtis and J. K. N. Jones, Can. J. Chem. 43, 2508 (1965). ¹⁷A. Klemer and K. Homberg, Chem. Ber. 94, 2747 (1961).
- ¹⁸A. Lipták, P. Nánási, A. Neszmélyi and H. Wagner, Carbohydr. Res. 86, 133 (1980).
- ¹⁹S. A. Abbas, J. J. Barlow and K. L. Matta, *Ibid* 98, 37 (1981).
- ²⁰J. Harangi, A. Lipták, V. A. Oláh and P. Nánási, Ibid 98, 165 (1981).
- ²¹G. Ekborg, J. Lönngren and S. Svenson, Acta Chem. Scand. Ser. B. 29, 1031 (1975).
- ²²A. Lipták, Tetrahedron Letters 3551 (1976).
- ²³A. Lipták, P. Fügedi and P. Nánási, Carbohydr. Res. 51, C19 (1976).

- ²⁴C. Subero, L. Fillol and M. Martin-Lomas, Ibid 86, 27 (1980).
- ²⁵E. C. Ashby and J. Prather, J. Am. Chem. Soc. 88, 729 (1966).
- ²⁶E. Breitmaier, G. Jung and W. Voelter, *Chimia* 26, 136 (1972). ²⁷E. Breitmaier and U. Hollstein, Org. Mag. Res. 8, 573 (1976).
- ²⁸S. J. Angyal, Angew. Chem. 81, 172 (1969).
- ²⁹S. J. Angyal and V. A. Pickles, Aust. J. Chem. 25, 1695 (1972).
- ³⁰E. Breitmaier and W. Voelter, Tetrahedron 29, 227 (1973).
- ³¹C. Williams and A. Allerhand, Carbohydr. Res. 56, 173 (1979). ³²S. J. Angyal, G. S. Bethell, D. E. Cowley and V. A. Pickles, Aust. J. Chem. 29, 1239 (1976).
- ³³S. J. Angyal and G. S. Bethell, Ibid 29, 1239 (1976).
- ³⁴G. J. Wolff and E. Breitmaier, Chem. Zeitung 103, 232 (1979).
- ³⁵T. Usui, N. Yamakoa, K. Matsuda, K. Tuzimura, H. Sugiyama and S. Seto, J. Chem. Soc. Perkin I. 2425 (1973).
- ³⁶P. Colson and R. R. King, Carbohydr. Res. 47, 1 (1976).
- ³⁷Z. Szurmai, A. Lipták, J. Harangi and P. Nánási, Acta Chim. Acad. Sci. Hung. 107, 213 (1981).
- ³⁸A. Lipták, Z. Szurmai and P. Nánási, in preparation.